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The temporal autocorrelation �AC� function associated with monitoring order parameters characterizing
conformational fluctuations of an enzyme is analyzed using a collection of surrogate models. The surrogates
considered are phenomenological stochastic differential equation �SDE� models. It is demonstrated how an
ensemble of such surrogate models, each surrogate being calibrated from a single trajectory, indirectly contains
information about unresolved conformational degrees of freedom. This ensemble can be used to construct
complex temporal ACs associated with a “non-Markovian” process. The ensemble of surrogates approach
allows researchers to consider models more flexible than a mixture of exponentials to describe relaxation times
and at the same time gain physical information about the system. The relevance of this type of analysis to
matching single-molecule experiments to computer simulations and how more complex stochastic processes
can emerge from a mixture of simpler processes is also discussed. The ideas are illustrated on a toy SDE model
and on molecular-dynamics simulations of the enzyme dihydrofolate reductase.
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I. INTRODUCTION

When enzymes and other proteins are probed at the
single-molecule level, it has been observed in both experi-
ments �1–3� and simulation studies �4–9� that conformational
fluctuations at several disparate time scales have physically
significant influence on both large-scale structure and bio-
chemical function. In this paper, a method for using a collec-
tion of Markovian surrogate models �10–12� to predict kinet-
ics that would often be considered non-Markovian is
presented �13,14�. The ideas in Ref. �12� are extended to
treat a system with more complex kinetics. The aim of the
approach is to obtain a better quantitative understanding the
factors contributing to complex time autocorrelations �ACs�
associated with quantities modulated by slowly evolving
conformational degrees of freedom. The focus is on systems
where certain thermodynamically important conformational
degrees of freedom evolve over an effective free-energy sur-
face with relatively low barriers; this situation is often rel-
evant to molecules undergoing a “population shift” or
“selected-fit” mechanism �5,7� and the connection to “dy-
namic disorder” �1� is also discussed. The particular enzyme
studied is dihydrofolate reductase �DHFR� because of its
biological relevance to therapeutics and also due the com-
plex kinetics associated with certain order parameters �7�.

Surrogate models are used to describe the short-time dy-
namics. These surrogates are fairly simple phenomenological
parametric stochastic differential equation �SDE� models.
Specifically the Ornstein-Uhlenbeck �OU� process and an
overdamped Langevin equation with a position-dependent
diffusion function �10,12,15,16� are considered as the candi-
date surrogate models. Position-dependent diffusion is often
observed when a few observables �or order parameters� are
used to describe an underlying complex system such as a
protein. Position-dependent noise models allow one to con-
sider ACs having a different functional form than an expo-

nential decay and it is demonstrated that this added flexibility
can be of assistance in both understanding short and long
time scale kinetics. Maximum-likelihood-type estimates uti-
lizing transition densities, exact and approximate �17–19�,
are used to fit our surrogate SDE models. The fitting method
does not require one to discretize �15� state space �the surro-
gates assume a continuum of states�. The temporal AC is not
used directly as a fitting criterion �14,20�, but the surrogate
models are able to accurately predict the AC after the model
parameters are fit. Maximum-likelihood-based approaches
employing accurate transition density approximations and a
parametric structure posses several advantages in this type of
application �21�. An accurate transition density of a paramet-
ric SDE facilitates goodness-of-fit tests appropriate for both
stationary �22,23� and nonstationary time series �24�. The
latter is particularly relevant to many systems �like the one
considered here� where the diffusion coefficient is modulated
by factors not directly monitored �12,13� and the hypothesis
of a single one-dimensional surrogate model describing the
modeled time series is questionable. Statistically testing the
validity of various assumptions explicitly or implicitly be-
hind a candidate surrogate model—such as Markovian dy-
namics, state-dependent noise, and/or regime switching—is
helpful in both experimental and simulation data settings
�25,26�.

The type of modeling approach presented is attractive
from a physical standpoint for a variety of reasons. The items
that follow are discussed further in the Results and Discus-
sion:

�i� In situations where the magnitude of the local fluctua-
tions depend significantly on the instantaneous value of the
order parameter monitored, simple exponential �or a finite
mixture of exponentials �27�� can be inadequate to describe
the relaxation and/or AC function �12�. The surrogates pro-
posed can account for this situation when overdamped diffu-
sion models can be used; additionally the estimated model
parameters can be physically interpreted.

�ii� It has been observed that even in single-molecule tra-
jectories that dynamic disorder can be observed due to ignor-
ing certain conformational degrees of freedom �1,2,13�; the*calderon@rice.edu
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methods proposed here can be used to account for this type
of variability and show promise for comparing frequently
sampled single-molecule experimental time series to com-
puter simulations where dynamic disorder is believed to be
relevant.

�iii� Changes in conformational fluctuation magnitudes
have been suggested to lead to physically interesting phe-
nomena, so possessing a means for quantitatively describing
an ensemble of dynamical responses can help one in better
understanding the complex dynamics of enzymes, e.g.,
�4–6,9�.

�iv� There is a general interest in showing how more com-
plex stochastic processes arise from a collection of simpler
parts �28–31�. It is discussed how, within a single trajectory,
a continuous type of regime switching of Markovian surro-
gate models produces an AC that would often be considered
non-Markovian.

The remainder of this paper is organized as follows. Sec-
tion II reviews the background and presents the models con-
sidered. Section III introduces the modeling procedure used
to approximate the AC function of a molecule experiencing
multiple types of fluctuations. Section IV presents the Re-
sults and Discussion and Sec. V provides the Summary and
Conclusions and this is followed by the Appendix.

II. BACKGROUND AND METHODS

A. Effective dynamics and statistical inference

The trajectory generated by a detailed molecular-
dynamics �MD� simulation will be denoted by �zi�i=1

N . The
dynamics of the order parameter monitored is assumed to be
complex �nonlinear, modulated by unobserved factors, etc.�
even at the relatively short O�ns� time intervals the order
parameter time series is observed over. However, over short
�50–100 ps time intervals a continuous SDE having the
form

dzt = ��zt;�,��dt + �2��zt;�,��dBt �1�

can often approximate the effective stochastic dynamics of
the order parameter �10,12�. In the above �� · � and �2� · � are
the nonlinear deterministic drift and diffusion functions �re-
spectively� and Bt represents the standard Brownian motion
�32�. The finite-dimensional parameter vector is denoted by �
and � is used to represent unresolved lurking degrees of
freedom that slowly modulate the dynamics �33�.

The surrogate SDE models are formed by first dividing
each trajectory into L temporal partitions. Each estimated
parameter vector is denoted by �� using the sequence
�zi�i=T�−1

T� and an assumed model, where � is an index of a
partition, 1¬T0� ¯ �T�� ¯ �TLªN, used to divide a
time series into L disjoint local temporal windows. Within
each of these windows, the data and the assumed model
structure are used to compute �� using maximum-likelihood-
type methods �exact �19� and approximate �17� depending on
the model�. The parametric structures considered are pre-
sented in the next section. It is to be stressed that we estimate
a collection of models, �����=1

L for each trajectory. The dif-
ferences in the estimated parameters are due in part to ran-

dom slowly evolving forces modulate the dynamics and also
in part to unavoidable estimation uncertainty associated with
a finite time series. It is demonstrated that a collection of
surrogate model parameter vectors is needed to summarize
conformational fluctuations inherent to many complex bio-
molecules. This procedure is repeated for each observed MD
trajectory or time series.

The term “local diffusion coefficient” 	D̃�z ;��
ª�2�z ;� ,�� is introduced in order to distinguish the coeffi-
cient in Eq. �1� from the diffusion coefficient usually implied
in the physical sciences: the former is estimated from the
observed data. The term “diffusion coefficient” used in sta-

tistical physics �34� is not necessarily the same as D̃�z ;��. If
� does not modulate the dynamics, the two definitions are
effectively identical. However, one theme of this paper is
that some traditional dynamical summaries of statistical
physics, such as diffusion coefficient and ensemble-based
AC, can be modified or made less coarse by using a collec-
tion of surrogate models. Such a procedure may help in in-
terpreting and understanding single-molecule time series.

B. Candidate surrogate SDE models

Two local parametric SDE models are considered. MAT-

LAB scripts illustrating how to obtain parameter estimates of
both models from discretely observed data are available on-
line �35�. The first is a linear constant additive noise process,

dzt = B�A − zt�dt + �2CdBt. �2�

The above SDE has a rich history in both the physical sci-
ences �36� where it is usually referred to as the OU process
and in econometrics where it is sometimes referred to as the
Vasicek process �19�. The parameter vector to estimate in
this model is �	�A ,B ,C�. This model is appealing for a
variety of reasons, one being that the exact transition density
and maximum-likelihood parameter vector for a discretely
sampled process �37� can be written in closed form, i.e., a
numerical optimization is not needed to find the parameter
vector because the parameter estimate can be written explic-
itly in terms of � and the observed data �19�.

The second is a nonlinear position-dependent overdamped
�PDOD� Langevin-type SDE �10,12,38�,

dzt = ��C + D�zt − �0��2�A + B�zt − �0��dt

+ �2�C + D�zt − �0��dBt. �3�

The variable �	1 / �kBT� is the inverse of the product of the
Boltzmann constant and the system temperature. �0 repre-
sents a free parameter; in this paper it coincides with the
umbrella sampling �US� point specified in the simulation.
The parameter vector to estimate in this model is �
	�A ,B ,C ,D�. Each parameter is estimated using the ob-
served data and the transition density expansions �17� asso-
ciated with Eq. �3� are used to construct a logarithmic like-
lihood cost function. A Nelder-Mead search is then used to
find the � maximizing the associated cost function. The ef-
fective force in the above model is assumed to be linear in z,
e.g., F�z�ªA+B�z−�0� whereas the local diffusion coeffi-

cient function 	D̃�z ;��ª �C+D�z−�0��2 is quadratic in z.

CHRISTOPHER P. CALDERON PHYSICAL REVIEW E 80, 061118 �2009�

061118-2



The overdamped appellation comes from multiplying the ef-
fective force by the effective friction �as determined by the
Einstein relation �38�� corresponding to this diffusion func-
tion.

In this paper, all stochastic integrals used are Itô integrals.
When a complex high-dimensional system with multiple
time scales is approximated with a low-dimensional SDE
possessing position-dependent noise the choice of the Itô or
Stratonovich integral influences the interpretation of the drift
function and the issue of which interpretation is “physically
correct” is a nontrivial problem �39,40�. A related item is the
so-called “noise-induced drift” �41,42�. Such a term is some-
times explicitly added to the drift �42�; one thermodynamic
motivation for this is discussed further in Appendix Sec. 2.

An appealing feature of the data-driven modeling proce-
dure presented here and elsewhere �10,12,25,33,43� is that
various SDE models, of an explicitly specified form, can be
considered, estimated, and tested using observed trajectories.
Statistical hypothesis tests making use of the conditional dis-
tribution �not just moments� of the assumed surrogate model
can then be used to test if the model assumptions are justified
for the observed data. Tools from mathematical statistics
�22,24� facilitate quantitatively and rigorously testing if cer-
tain features are required to adequately describe the stochas-
tic dynamics. Many features, e.g., position-dependent noise,
would be hard to statistically check using AC-based heuristic
methods. Such heuristic checks are traditionally used in sta-
tistical physics, e.g., �40,44�.

The data-driven models are used to approximate the sto-
chastic evolution of black-box data and the estimated param-
eters do have a loose physical phenomenological interpreta-
tion. If one desires to compute unambiguous physical
quantities from the estimated coefficients using a particular
definition from statistical physics, the models can also be
used to generate data for this purpose. For example, surro-
gate models can generate nonequilibrium �surrogate� work
�10,11,33� and, under various assumptions, a well-defined
thermodynamic potential of mean force �PMF� can be de-
rived from such data �38,45�. This contrasts the case where
one starts with a high-dimensional stochastic process �of
known functional form� and then uses stochastic analysis to
reduce the dimensionality of the system by first appealing to
asymptotic arguments �39� and then possibly modifying the
resulting equations to achieve a desired physical constraint
�42�. In both analytical and data-driven cases, the goal is
often to construct a single limiting low-dimensional evolu-
tion equation that can be used to predict statistical properties
of the complex system valid over longer time scales
�15,38–40�. It is not quantitatively clear at what time scale
such an approximation �if any such a useful approximation
exists at all� is valid over. Furthermore, it is usually difficult
to determine if an equilibrium concept such as a PMF con-
nects simply to trajectorywise kinetics in small complex sys-
tems experiencing fluctuations. Again, an appealing feature
of the approach advocated here is that various statistical hy-
pothesis tests �22–24� can be used to quantitatively assess the
validity of proposed �reduced� evolution equations to see if
physically convenient models are consistent with the ob-
served data. For example, such tests can be used to determine
the time one needs to wait before the inertia of the order
parameter can be neglected �12�.

Regarding the validity of using a single surrogate SDE to
approximate “long-term” 	O�ns� trends, a main underlying
theme of this paper and others �11,12,25,33� is that the pres-
ence of a lurking slowly evolving degree of freedom, �, can
significantly complicate using a single equation and that
methods for quantitatively accounting for this sort of varia-
tion are underdeveloped. Information in these types of mod-
els has proven useful in both theoretical chemistry computa-
tions �11,33� and in characterizing nanoscale experimental
data �25,26,46�. Throughout this paper, it is shown how the
collection of surrogate models can be linked with the ideas
of dynamic disorder �1� to make quantitative statements
about systems observed at the single-molecule level.

III. METHOD FOR COMPUTING THE AC FUNCTION
OF COMPLEX SYSTEMS

Before providing the algorithmic details of the method,
the basic ideas and motivations behind the approach are
sketched in words. It is assumed that a �-type coordinate
slowly evolves �diffusively� over a relatively flat region of an
effective free-energy surface. This evolution modulates the
stochastic dynamics of the order parameter modeled, e.g., it
changes the local diffusion coefficient function �12,13�.
However, due to the almost continuous nature of the param-
eter change, a sudden or sharp change in the process dynam-
ics is assumed difficult to detect in short segments of the
time series �sudden regime changes or barrier crossings are
not readily apparent in the data�. Over longer time intervals,
the changes become significant and the validity of a simple
SDE model like the ones considered here to describe the
global dynamics becomes suspect. However, if the evolution
rules are updated as time progresses in the spirit of a dy-
namic disorder description �1�, then there is hope for using a
collection of these models to summarize the dynamics. Even
if the data are truly stationary, some fluctuations due to a
�-type coordinate may take a long time to be “forgotten”
�2,14�. The idea proposed here is essentially to use the esti-
mated model for a time commensurate with time interval
length used for estimation and hypothesis testing and then
suddenly switch model parameters. By doing this, one can
take a collection of fairly simple stochastic models and con-
struct another stochastic process possessing a more complex
AC function.

One advantage of such a procedure is that an ensemble of
elementary or phenomenological pieces can be constructed
to gain a better understanding of how variation induced by
slowly evolving fluctuations affects some system statistics
and this information may help in better quantitatively under-
standing some recently proposed enzyme mechanisms �4–9�.
This method is in line with the single-molecule philosophy
that dynamical details should not be obscured by bulk aver-
aging artifacts when possible. It is demonstrated how using a
traditional AC summary of the data would obscure informa-
tion of this sort on a toy example. Since the time scales at
which simulations and single-molecule experiments span are
rapidly converging, this type of dynamical summary can also
be used to help in matching the kinetics of simulations and
experiments and/or can be used to understand how more
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complex dynamics emerge from simpler evolution rules
�28–31�.

Recall that for a single trajectory coming from a high-
dimensional system, the time series data are divided into
partitions and within each partition the parameters of both
candidate models are estimated by methods discussed in the
previous section. This results in a collection �����=1

L for a
each trajectory observed.

The algorithm goes as follows: The Euler-Maruyama �47�
scheme is used here to simulate NMC trajectories for each
�� �����=1

L . The surrogate SDEs are recorded every 
t
and denote simulated order parameter time series by
{�zi

s,�j��i=T�−1

T� }�=1
L with j=1, . . . ,NMC. To construct a new time

series using the NMC trajectories generated, set xs= � � , �
=1 and for t=1 to n�L repeat the following:

�1� Draw uniform integer u� �1,NMC�.
�2� Set xs={xs , �zs,�u��i=T�−1

T� }.
�3� Update counter �=mod�t ,L�+1.
The procedure described results in a new time series

�xi
s�i=1

N� , where N�	n�N. Note that the time ordering of the
original data is maintained and the last step forces the series

�xi
s�i=1

N� to be periodic, so time lags 	N
t cannot be resolved

with this method. If the integer n	1, the series �xi
s�i=1

N� con-
tains more temporal samples than the original series. A larger
sample size reduces the statistical uncertainty in an empiri-
cally determined AC. The issue of reducing uncertainty is
subtle and is discussed in detail using the toy model pre-
sented in the next section. If the time ordering is believed to
be irrelevant, the first step can be modified to drawing two
random integers. The other random integer can be used to
randomize the � index �48�.

This procedure can then be repeated for each trajectory
coming from a high-dimensional system. It is to be stressed
that sudden and relatively infrequent regime switches �“bar-
rier hopping”� cannot be described with this method. If the
simulation or experiment is associated with a system pos-
sessing a jagged or rough free-energy surface with many
small barriers and if a single trajectory can frequently sample
the hops, then there is hope for using this method. However,
note that the method is designed to treat relatively smooth
regime changes �i.e., regime changes hard to identify by
simple visual inspection�. A discussion on how the surrogate
models can be potentially used in more complex situations is
briefly discussed later.

IV. RESULTS AND DISCUSSION

A. Toy model

In order to demonstrate the AC method on a simple ex-
ample and illustrate some points in a controlled setting, we
use the following SDE model:

dyt
I = �0�0 − yt

I�dt + �0dBt
1,

dyt
II = �0�t − yt

II�dt + �0dBt
1,

dyt
III = �t�t − yt

III�dt + �tdBt
1,

dt = 1/�0�0 − t�dt + �dBt
2,

d�t = 1/�0��0 − �t�dt + ��dBt
3,

d�t = 1/�0��0 − �t�dt + ��dBt
4, �4�

where the constants 0 ,�0 ,�0 are meant to play the role of
the surrogate parameters �A ,B ,C� in the OU model. In the
above expressions, superscripts are used simply to distin-
guish different constants or processes and do not represent
exponentiation. Superscripts on the dBt terms are used to
distinguish separate independent standard Brownian mo-
tions. The roman numeral superscripts distinguish three
cases: �I� the standard OU model, �II� an OU type model
where the mean level  evolves stochastically, and �III� an
OU-type model where all parameters evolve stochastically.
The parameter �0 dictates the time scale at which the OU
parameters stochastically evolve. The evolution studied here
is made to be slow relative to that dictated by �0. The �as-
sumed unobserved� processes t ,�t ,�t are meant to mimic a
dynamic-disorder-type �2� situation.

In addition, a fourth process referred to as “III �proxy�”
will be evolved to demonstrate the AC method of Sec. III.
This process is constructed by simply setting the parameters
0 ,�0 ,�0 equal to the corresponding parameters of process
�III� at time t and then evolving this process like a standard
OU model until the time index hits t+T when the parameters
are updated to those of process �III� at the same time. This
procedure is then iterated. Randomizing T had little influence
on the accuracy here, but can be entertained. The processes
above are simulated using the Euler-Maruyama scheme with
time step size 
s and the process is observed discretely every

t time unit. The remaining parameters are tuned to provide
a parameter distribution consistent with those observed in
some DHFR studies. Thes parameters are reported in the
Appendix.

The toy model is used to investigate how variation in-
duced by slowly evolving �-type factors influence the com-
puted empirical AC on a controlled example where the as-
sumptions behind the method introduced are satisfied. The
features discussed are relevant to the DHFR system studied
later and are also likely relevant to other single-molecules
studies. The example is also used to highlight issues relevant
to nonergodic sampling �13�, i.e., when temporal averages
are not equivalent to ensemble averages. In this type of situ-
ation, single-molecule data are particularly helpful. The use
of the same Brownian motion term to drive three separate
processes facilitates studying contributions to variance in
these types of studies. In addition, the estimation is not car-
ried out to keep the discussion simple and to remove an
additional source of uncertainty.

The left panel of Fig. 1 plots the empirical AC computed
by sampling four realizations from this process using 5000
observations uniformly spaced by 
t=0.15 ps. These time
series lengths are commensurate with those used in typical
MD applications �7,27,49�. One observes that the slowly
evolving parameters do influence the AC measured. The
fairly simple method of periodically updating the evolution
parameters is able to mimic the AC associated with yIII for
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both short and long time scales. Furthermore, the variation
induced by the relaxation and noise level �modulated by �t
and �t� influences both the short- and longer-time responses.
The stochastic response of a dynamic-disorder-type process
is clearly richer than a single exponential. An advantage the
surrogate approach offers over popular existing methods for
treating this situation �27� is that other kinetic schemes, e.g.,
those associated with overdamped models with position-
dependent diffusion, can be entertained. In enzymes associ-
ated with complex dynamics, other kinetic schemes may be
needed to accurately reflect the stochastic dynamics of the
order parameter monitored. For example, it is demonstrated
in Fig. 3 that the PDOD surrogate is needed accurately cap-
tured relaxation kinetics even at short O�ps� time scales.
Over time scales relevant to experimentally accessible order
parameters characterizing conformational fluctuations, one
may need to account for dynamical responses more involved
than a mixture of exponentials �12,14,50�. The procedure
presented demonstrated how “elementary” pieces could be
patched together to characterize relaxations and fluctuations
occurring over longer time scales. This is attractive to both
computer simulations and experimental data sets. In what
follows the attention is shifted to focusing on limitations of
using a single AC to describe single-molecule time series.

The right panel of Fig. 1 plots the standard deviation of
the AC function associated with a trajectory population. For
each observed trajectory, 100 different SDE trajectories were
used to compute 100 empirical ACs from the time series
associated with the trajectories. The pointwise standard de-
viation measured over the 100 ACs is plotted. The curve
shadings distinguish different time series sample sizes. The
three cases studied consisted of �0.5,2 ,8��104 discrete tem-
poral observations; each time series was uniformly sampled
with 0.15 ps between observations. Note that the influence of
the evolving parameters on the measured AC is substantial.
Recall that all y processes used common Brownian paths �so
computer generated random numbers do not contribute to the
differences observed�. In addition, observe that the difference
between yII and yIII persists for a fairly long time and the
length of time that this difference is measurably noticeable

depends on the temporal sample size used to compute the
AC. In some applications, the variation induced by confor-
mational fluctuations is important in computations �33� or to
characterize a system �5,49�. The standard deviation in the
measured AC here contains contributions coming from fac-
tors meant to mimic the influence unresolved conformational
fluctuations whose influence persists for a fairly long time. In
the AC computed with longer time series, i.e., spanning a
larger time since the time between observations is fixed, the
process has more time to “mix” and hence the difference
between temporal and ensemble averages is reduced. Said
differently, the influence of the initial conformation, or
“memory,” diminishes. By using a single long-time series
trajectory and only reporting one AC computed from this
mixed series, these types of physically relevant fluctuations
can get washed out by using a single AC function. This goes
against the spirit of single-molecule experiments.

The example considered here is admittedly simple and
was constructed to illustrate the types of assumptions behind
the method introduced. If the dynamic disorder is induced by
large kinetic barriers then one would need to construct more
sophisticated processes for determining how and when the
parameters regime switch. Combining the surrogate models
with efforts along these lines, e.g., �51�, may be able to help
these more exotic situations. Exploring the various routes by
which complex and/or heavy tailed ACs �2,14� can emerge
from simpler dynamical rules can help in a fundamental un-
derstanding of the governing physics �28–31�. However, if
the ensemble average decay rate is deemed as the only quan-
tity of physical relevance then the collection of surrogate
models can still potentially be used to help in roughly pre-
dicting the rate of decay of more complex ACs. This is par-
ticularly relevant to simulations where obtaining long
enough trajectories to reliably calibrate models possessing
complex AC exhibiting long-range dependence from ob-
served data is problematic �12,14,52�. Even in cases where
one only requires a coarse time decay of an ensemble of
conformations for a physical computation �53� and can simu-
late for a long enough time to directly monitor kinetics, an
understanding of the distribution of surrogate models esti-
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FIG. 1. �Color online� The �un-normalized� AC of four realizations, distinguished by different color shades in the plot, from four toy
processes discussed in the text �left�. The time lag 
t reported is in ps. The standard deviation of the AC curves measured in a trajectorywise
fashion from a population of 100 trajectories. The different line shades denote different temporal samples sizes �see text�. The computed
standard deviation reflects the variance in a population of 100 empirically determined ACs.
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mated will likely be of help in linking computer simulation
force fields to single-molecule experimental time series. The
remaining results use simulations of DHFR to illustrate some
of these points.

B. DHFR

1. DHFR simulation details

The detailed computational details are reported in Ref.
�7�. Briefly, an order parameter denoted by �Drmsd was de-
fined using the root-mean-square distance between two crys-
tal structures �7�. This order parameter provides an indication
of the proximity to the “closed” and “occluded” enzyme state
and is reported in units of Å throughout. The initial path
between the closed and occluded conformations of DHFR
was generated using the nudged elastic band �NEB� method
�54�. Subsequently, �50 configurations obtained from NEB
path optimization were subjected to US simulations. During
these US simulations, production runs of 1.2 ps at 300 K
were performed after equilibration using a weak harmonic
restraint.

2. DHFR results

Figure 2 plots the average local diffusion coefficient of
the surrogate SDE models using two different observation
frequencies on the left axis, and on the right axis the free
energy computed in Ref. �7� is plotted. Each surrogate model
was estimated using 400 time series observations with either

=0.15 or 0.30 ps separating adjacent observations corre-
sponding to L=20 or 10 �respectively�. The average local
diffusion coefficient demonstrates a relatively smooth in-
creasing trend for a majority of the order parameter values
explored, but then suddenly changes abruptly around
�Drmsd�3 Å. It has been observed that an interesting inter-

play between free energy, fluctuations, and stiffness exists in
some enzyme systems �4–6,9� and this plot suggests that
future works investigating some of the finer structural factors
leading to this change may be worthwhile, although this di-
rection is left to future work because it is outside the scope of
this study.

It is to be stressed that the mean of each US window is
not adequate to summarize the dynamics. That is, a single
fixed parameter surrogate SDE like the ones considered here
cannot mimic the longer-time statistics of the process. This is
why the AC procedure introduced in Sec. III is needed. Fig-
ure 3 demonstrates that the individual PDOD models do cap-
ture simpler features that surrogates cannot. This is due
partly to the position dependence of the local diffusion coef-
ficient. The PDOD surrogate model combined with the pro-
cedure of Sec. III can accurately summarize the longer-time
dynamics. These points are explained further in the discus-
sion associated with Figs. 3–5.

The ability of the PDOD model to capture features that a
single exponential �e.g., the AC associated with an OU pro-
cess� cannot is demonstrated in Fig. 3. Results from four
different US points, each possessing different degrees of po-
sition dependence on the noise, are shown. Here, the results
obtained using both the OU and PDOD surrogates calibrated
using 
t=0.15 ps with 400 temporal observations and the
corresponding AC predictions are shown in the plot. The
empirical ACs computed using the short segments of MD
data used for surrogate model parameter estimation are also
reported. Results with 400 blocks possessing observations
spaced by 
t=0.30 ps were similar in their AC prediction,
but hypothesis tests strongly rejected the assumption of a
constant local diffusion function �see Fig. 5�. The 400 
t
=0.15 ps samples allowed the OU model structure to pro-
vide a better fit �as measured by the fraction rejected com-
pared to the OU model calibrated using 
t�0.30 ps data�
because the local diffusion function had less time to evolve
or change value. For cases where the position dependence is
moderate, the PDOD and OU surrogate models predict quali-
tatively similar AC functions. However, the PDOD model
captures the short-time relaxation dynamics better than the
OU for cases where the position dependence of the local
diffusion is more substantial and hence for clarity we focus
on the PDOD models in the remaining kinetic studies.

Figure 4 plots the empirically determined AC obtained
from different MD production simulation data. The case la-
beled “in-sample” was the one used for the estimation of the
local models reported in Fig. 3 and that labeled “out-of-
sample” was computed by running a longer 3.6 ns simulation
and computing the AC from the last 1.2 ns of this time series.
The PDOD version of these models was used along with the
procedure outlined in Sec. III using blocks of size 800 and
randomizing the time index. The 400 block results were
similar. Respecting the time ordering of the surrogate models
only improved results marginally. Note also that the general
trends of the long-time decay of the MD data are captured
with the procedure and that there is a substantial difference
between the in-sample and out-of-sample MD trajectories
�55�. The physical relevance of such a variation was previ-
ously discussed and will be expanded on when results of
stationary DHFR density prediction are shown. The primary
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FIG. 2. �Color online� Average local diffusion function esti-
mated �left axis� and free energy �right axis� as a function of order
parameter. The population average of the estimated C2 �Å2 /ps� is
plotted to give a feel for the position dependence of this quantity; it
is stressed that the average alone is not adequate to describe the
dynamics here due to a type of dynamic disorder phenomena �1�.
The free energy �kcal/mol� was computed by Arora and Brooks III
using methods described in Ref. �7�.
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observation is that a collection of PDOD surrogate models
was able to capture the basic relaxation trends of the enzyme
that a single surrogate could not. Recall that even at short
time scales a single exponential decay was inadequate to fit
the data. Similar trends were observed for all 51 US win-
dows explored. However, it is to be stressed that the proce-
dure shown here is to decompose kinetics in the longest con-
tiguous block of discrete time series observed. If complex
dynamics occur over longer time scales and data are not
available that directly sample these scales, then the method
cannot be used to predict the long-time behavior that was not
sampled.

The goodness-of-fit of the surrogate models using the two
candidate SDEs is shown in Fig. 5 for various US windows.
The median of the Q-test statistic introduced in �24� is re-
ported. This test statistic under the null is asymptotically
normally distributed with mean zero and unit variance, but
has also been proven to be useful in small samples
�12,24,33,43�. Recall that each MD time series �at each um-
brella sampling window� was divided into small pieces. In
the portions near the edges �larger 
�Drmsd
 values�, where
the position dependence of the noise is greatest, one observes
that the OU model population has a median that would typi-
cally indicate a collection of poor dynamical models. If con-
formational fluctuations slowly modulate the dynamics, the

longer the time series one has, the likelihood of departing
from any simple surrogate model increases �56�. Goodness-
of-fit tests, like the ones presented here, can be used to quan-
titatively approximate when simple models begin departing
from various assumptions.

The stationary density predicted by the surrogate OU
models in a case where position dependence was shown to
be marginal for the time interval data that were monitored is
plotted in Fig. 6. Here, the mixture method discussed in Ref.
�12� is reported due to its relevance to a collection of surro-
gates and dynamic disorder. The histogram of the 1.2 ns MD
data is also plotted as well as the stationary density predicted
by the average of the surrogate models taken at the US win-
dow near �Drmsd�2. Using a single model obtained by ag-
gregating all time series together in hope of reducing surro-
gate parameter uncertainty �i.e., the time series sample size
increases� gives poor results relative to the MD data and
mixture method. The mixture of OU models was calibrated
using four sets of noncontiguously spaced 60 ps data �i.e.,
400 entries spaced by 0.15 ps� were sampled every 300 ps
from the MD process and this was used to compute four
surrogate OU model parameters. The goodness-of-fit tests
indicated that the local surrogates given the data were rea-
sonable dynamical models. So portions where the “local
equilibrium” density, i.e., the stationary density predicted by
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FIG. 3. �Color online� Normalized local AC function of MD data �more jagged curves� and that predicted by surrogates. The total time
series of length 1.2 ns was divided into separate blocks, each containing 400 observations spaced by 0.15 ps �the time lag 
t is reported in
ps�. These data were used to estimate a collection of surrogate models and a collection of MD ACs corresponding to US target points of
�Drmsd�−1.8, 0.9, 1.9, and 3.1 Å. The AC corresponding to the estimate surrogate models is also plotted where the initial lag is normalized
to unity to facilitate comparison �the raw units are shown in Fig. 4�.
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a surrogate with estimated parameters, possessing significant
probability mass can be thought of as regions of phase space
sampled due to fast-scale motion for a relatively fixed �and
unobserved� value of � �12,25�. If variation in the conforma-
tional coordinate is important to thermodynamic averages, as
the data here suggest to be the case in DHFR, then one needs
to use a collection of local equilibrium densities �12�. The
advantage of such an approach is that short bursts of simu-

lations started from different initial conditions can be run,
then surrogate models can be calibrated and tested. If the
surrogate is found suitable, it can then be used to make pre-
dictions on the local equilibrium density, and the variation in
the local equilibrium densities can be used to partially quan-
tify the degree to which a slow conformational degree of
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FIG. 4. �Color online� The global �un-normalized� AC prediction. The procedure introduced here is used along with PDOD data to predict
the long-time AC �the time lag 
t is reported in ps�. The relaxation predicted by the individual surrogate �data shown in Fig. 3� are also
shown to stress that the SDE parameters are not fixed, but evolving and any single surrogate cannot capture the richer long-time dynamics.
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freedom modulates the dynamics. This treatment is appealing
when data on other physically relevant order parameters are
either unknown or not easy to measure.

V. SUMMARY AND CONCLUSIONS

Single-molecule experiments and simulations offer the
potential for a detailed fundamental understanding of com-
plex biomolecules without artifacts of bulk measurements
obscuring the results. However, one must deal with complex
multiscale fluctuations at this level of resolution and the fac-
tors contributing to the noise often contain physically rel-
evant information such as quantitative information about
conformational degrees of freedom �25�. The abundance of
data available to researchers and recent advances in compu-
tational and statistical methods are allowing researchers to
entertain new methods of summarizing information relevant
to modeling systems at the nanoscale �25,33,46�.

By applying surrogate models to the data coming from
biased MD simulations of DHFR, it was demonstrated that a
collection of stochastic dynamical models can be used to
better understand the factors contributing to the shape of the
autocorrelation function associated with fluctuations coming
from multiple time scales. The surrogate models were esti-
mated by appealing to maximum-likelihood-type methods
�17–19� and were checked using goodness-of-fit tests, which
utilized the transition density of the assumed surrogate. The
tests used were appropriate for time correlated data. The time
series data were not assumed to be stationary; the stationarity
assumption is often suspect in simulation data. The tests used
�24� indicated that taking the position dependence of the
noise into account was required to provide a statistically ac-
ceptable model in many regions of phase space explored. For
short time scales, the individual surrogate models �taking
position dependence noise into account� were capable of pre-
dicting quantities outside the fitting criterion, e.g., a paramet-
ric likelihood function was fit but the models were able to
predict short time scale autocorrelation functions and these
physically based models were able to fairly accurately model
relaxation kinetics that a simple exponential relaxation could
not. Other enzyme systems have exhibited this type of be-
havior �12� and it is likely that future single-molecule experi-
ments will yield data possessing this feature.

Perhaps more importantly, we demonstrated that a popu-
lation of surrogate models was required to represent the com-
plex dynamical system because an unobserved conforma-
tional degree freedom modulated the dynamical response and
this feature had to be accounted for in order to predict auto-
correlations valid for longer temporal trajectories. A method
using parametric surrogate models calibrated over short time
scales while at the same time respecting the variability in-
duced by unresolved coordinates evolving over longer time
scale was presented. The DHFR system was another instance
where aggregating a collection of simpler dynamical models
gave rise to a more complex stochastic process �12,28–31�.
The basic idea is applicable to situations where a hidden
slowly evolving degree of freedom modulates the dynamics
and this coordinate evolves on an effective free-energy sur-
face possessing relatively low barriers �12�. Issues associated
with extensions were briefly discussed.

Even if a coarse system description, such as a single au-
tocorrelation function, can be used to adequately approxi-
mate the physically relevant statistical properties of all ex-
perimentally accessible observables, the approach presented
still has appeal. One circumstance where this is particularly
relevant is when computer simulation trajectories are com-
pared to frequently sampled experimental single-molecule
time series �25�. In experimental time series, many confor-
mational coordinates cannot typically be resolved �12,25�, so
constructing a simulation that matches all relevant degrees of
freedom is highly problematic. Quantitative knowledge of
how the variability induced by such hidden degrees of free-
dom is reflected in the surrogate model parameter distribu-
tion may help in refining force fields to match kinetic prop-
erties at multiple time scales. If the force fields are believed
to be valid, then turning to the simulations for details of the
structural dynamics can help us in understanding complex
molecular machines �57�. This type of extra detail may also
assist �or lead to new� methods for computing transition rates
�58�. Furthermore, as nanotechnology demands higher reso-
lutions at smaller length and time scales, one may want to
avoid using a single autocorrelation function constructed by
aggregating many mesoscopic or microscopic states, each
possessing different dynamical features, because doing so
may unnecessarily wash out physically relevant information.
The phenomenologically motivated simple bottom-up strat-
egy presented was one contribution in this direction.
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APPENDIX

1. Toy model parameters

Here, 
t=0.15, 
s=
t /50, T=200
t, �0=120,
�0 ,�0 ,�0�= �4,0.2,0.5�, �� ,�� ,���= �6.5�10−2 ,6.5
�10−3 ,1.9�10−2�. The last set of parameters were selected
to give the evolving OU parameters a stationary distribution
characterized by three independent normals each having
mean �0 ,�0 ,�0� and standard deviation �1/2,1/20, 3/20�.
The initial condition of each y process was set to 0 and the
OU parameters were all set to �0 ,�0 ,�0�. 100 batches of
four independent Brownian motion processes were used to
evolve the system.

2. Predicting quantities with surrogate models

The OU process is attractive for a variety of reasons. The
conditional and stationary densities are both known analyti-
cally and it can be readily estimated from discrete data. An-
other appealing feature is that the AC function, denote this
function by AC�t� �27�, associated with a stationary process
can readily be computed after parameter estimates are in
hand, namely, AC�t�=exp−Bt; recall that the drift of the OU
process is given by B�A−z�.

Unfortunately, these types of statistical summaries are
more difficult to obtain with other SDEs. The position de-
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pendence of the diffusion function and nonlinear models se-
verely complicate obtaining analytical expressions for the
autocorrelation function. Note that, once a single SDE mod-
els is estimated, a new large collection of sample paths can
be simulated and quantities like the autocorrelation function
associated with a given SDE model and � can be empirically
determined �the computational cost of simulating a scalar
SDE is typically marginal in relation to a MD simulation�.
This can be repeated for each surrogate SDE estimated from
each MD path.

A stationary density, under mild regularity conditions, of a
scalar SDE can often be expressed in closed form using only
information contained in the estimated SDE coefficient func-
tions via the relation �41,59�

pSD�z;�� = Z/��z�2 exp��
zREF

z

��z��/��z��2dz� , �A1�

where in the above the SDE functions’ dependence on � and
� has been suppressed to streamline the notation. Z repre-
sents a constant to ensure that the density integrates to unity
and zREF represents an arbitrary fixed reference point. When
evaluating pSD� · �, one can encounter technical difficulties if
the diffusion coefficient is allowed to take a zero or negative
value �this is relevant to the PDOD model�. Some heuristic
computational approaches to dealing with this are discussed
in Refs. �12,43�.

Sometimes a thermodynamic motivation exists for ex-
pressing the stationary density of the high-dimensional mo-
lecular system in terms of some potential, denoted here by
V�z�, which does not explicitly depend on the diffusion func-
tion �40,41�. In time-homogeneous scalar overdamped
Brownian dynamics, where the forces of interest acting on z
are believed to be related to the gradient of V�z�, a noise-
induced drift term �41� can be added to the drift function and

this addition cancels out the contribution coming from the
1 /��z�2 term outside the exponential. The stationary density
of the modified SDE can then be expressed as being propor-
tional to exp�−�V�z�� in such a situation. This type of modi-
fication has a thermodynamic appeal when z is the only im-
portant variable of the system and the fast-scale noise has
been appropriately dealt with �39�. The utility of such an
approach in describing the pathwise kinetics of trajectories is
another issue and single-molecule studies are one area where
the distinction may be important �one may not care as much
about the stationary ensemble distribution�.

However, when there are slowly evolving lurking vari-
ables like � modulating the dynamics �as is the case in many
biomolecular systems�, using simple expression like Eq.
�A1� to approximate the stationary density of the high-
dimensional system �with or without noise-induced drift cor-
rections� is highly problematic. Note that the � variable has
been retained in the left-hand side of Eq. �A1�; the stationary
density estimate is only meant to be valid for a fixed esti-
mated SDE surrogate corresponding to one value �. In this
paper and others, it is assumed that for a short time interval
both � and � are effectively frozen. Given a model and short-
time data, this can be tested using goodness-of-fit tests. How-
ever, over longer time scales, � evolves and modulates the
dynamics so the estimated � evolves in time �this is why the
situation can be thought of as a type of dynamic disorder
�1��. For this long-time evolution, it is assumed that the form
of a stochastic process depending only on z is completely
unknown to the researcher. Furthermore, it was assumed that
another order parameter �i.e., system observable� is unavail-
able or is unknown �12,25,50�. Hence, to approximate the
stationary distribution of the high-dimensional molecular
system, one would require a collection of pSD’s �each with
different �’s� to approximate this quantity. One procedure
accomplishing this is presented in Ref. �12�.
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